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Abstract

The fundamental characteristics of the two-dimensional cavitating flow of liquid helium in a vertical pipe near the

lambda point are numerically investigated to realize the further development and high performance of new cryogenic

superfluid cooling systems. It is found that the phase transition of the normal fluid to the superfluid and the generation

of superfluid counterflow against normal fluid flow based on the thermomechanical effect is conspicuous in the large gas

phase volume fraction region where the liquid to gas phase change with cavitation actively occurs. Furthermore, it is

clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the

deprivation of latent heat for vaporization from the liquid phase.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Cryogenic flow systems or machinery that include

cavitating flow or two phase flow are widely used in

LNG plants, aerospace technology, superconducting

magnets technology, infrared space telescope, and many

other engineering applications [1,2]. Thus, the investi-

gation of the cavitating flow or two phase flow charac-

teristics of cryogenic fluids such as liquid helium is very

interesting and important not only in the basic study of

the hydrodynamics of cryogenic fluids [3], but also for

providing solutions to problems related to new practical

engineering applications like the new concept of multi-

phase superfluid cooling system using liquid helium

cavitating flow. The principle of this cooling system is

schematically depicted in Fig. 1. The system can realize

the extensively low-temperature cooling utilizing the He

I to He II phase transition based on cavitation of the

normal fluid, without the direct use of He II. Addi-
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tionally, the concept of multiphase superfluid cooling

should be expected for development of the available

micro-cooling system, such as micro-electro-mechanical

systems (MEMS) technology using micro bubble [4],

because the unique characteristics of zero-viscosity of

superfluid working refrigerant prevents the frictional

dissipation of a capillary channel in micro devices. The

direct use of the He II flow encounters very difficult

problems because of its production method in super

low-temperature field, or super leak phenomena in

transfer system, etc. Thus, it is possible to say that the

application of cavitating flow of He I as a refrigerant is

very useful and effective method for low-temperature

cooling or cryogenic heat exchange system.

In general, cryogenic fluids are characterized by large

compressibility compared with fluids at room tempera-

ture such as water, as well as by a small difference in

density between the gas and liquid phases, and a small

latent heat of vaporization. These unique characteristics

of cryogenic fluids can be utilized to realize high per-

formance in fluid apparatuses, such as the cavitating

operation of inducers [5].

Although cryogenic fluid flow characteristics has

been investigated for many years, there yielded only
ed.
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Nomenclature

cp specific heat at constant pressure

D inner diameter of pipe

e specific internal energy

g vector of gravitational acceleration

h specific enthalpy

I unit tensor

j momentum flux density vector

k heat transfer rate

N number density

P absolute pressure

R radius of bubble or droplet

r radial coordinate

S specific entropy

T absolute temperature

t time

u velocity component in the r-direction
v velocity component in the z-direction
v vector of velocity

x position vector

z longitudinal coordinate

a void fraction

C phase generation density

j ratio of specific heat

k thermal conductivity

l dynamic viscosity

m kinematic viscosity

q density

r surface tension

h azimuthal coordinate

s viscous stress tensor

x vorticity

X angular velocity vector

R gas constant

Subscripts

ð Þc condensation

ð Þe evaporation

ð ÞðexÞ exit section of the pipe

ð Þg gas phase

ð ÞðiÞ interface

ð ÞðinÞ inlet section of the pipe

ð Þl liquid phase

ð Þmax maximum value

ð ÞðnÞ normal fluid

ð Þs saturation

ð ÞðsÞ superfluid

ð Þr component in the r-direction

ð ÞT transposed matrix

ð Þz component in the z-direction
ð Þk lambda point

ð Þh component in the h-direction

150 J. Ishimoto, K. Kamijo / International Journal of Heat and Mass Transfer 47 (2004) 149–163
limited information on the theoretical and experimental

study of the basic multiphase hydrodynamic character-

istics of cavitating pipe flow of cryogenic fluids such as

superfluid liquid helium [6–9]. The main reason for the

difficulty in the study of cryogenic fluids is that effective

formulation, modeling and numerical procedure of the

governing equations for cryogenic cavitating flow with

phase change have not been established. Difficulties in

the experimental confirmation of cryogenic fluid under

condition of a low-temperature field and the complete

heat insulation of the flow pipe with measuring devices

are other reasons. In particular, in the case of liquid

helium, as the superfluidity in the low-temperature field

less than the k point shows extremely complex phe-

nomena, many difficulties are encountered in the theo-

retical analysis. To overcome these difficulties, we herein

develop a new method for analyzing cavitating flow

based on an advanced mathematical model, which takes

the effect of superfluidity of the cavitating cryogenic flow

state in the low-temperature field into consideration.

In the present study, the two-dimensional character-

istics of cavitating flow of liquid helium with phase

change in a pipe are numerically investigated to realize

the further development and high performance of cool-
ing devices or new cryogenic engineering applications.

First, the governing equations of the cavitating flow of

liquid helium based on the unsteady multi-fluid model

are presented, and then several flow characteristics are

numerically calculated, taking into account the effect of

superfluidity.
2. Numerical method

In the past few years, the governing equations that

represent the gas–liquid two-phase mixture flow of liq-

uid helium have been derived and numerically solved by

one of the authors [10]. As a result, the two-phase flow

characteristics with superfluidity have been partially

clarified. In the previous analysis of two-phase flow, we

used the drift-flux model, which is the analytical model

for two-phase mixture flow taking into account the effect

of pseudo gas–liquid relative velocity, so the effects of

the momentum or energy exchange between gas and

liquid phases have not strictly been considered [10]. In

the present study on the cavitating flow of liquid helium,

we developed a new model for analysis, which is based

on the unsteady thermal nonequilibrium multi-fluid



Fig. 1. Concept of multiphase superfluid cooling system using

cavitating flow of liquid helium.
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model by Kataoka [11]. Furthermore, to consider the

effects of the evaporation and the condensation on the

vapor bubbles, we apply the rapid phase change model

to the cavitating flow of liquid helium with superfluidity.

The system used in the numerical analysis is schemati-

cally depicted in Fig. 2. Applications using cryogenic

fluid generally encounter obstacles or complex pipe

shapes such as an orifice or a converging–diverging
Fig. 2. Schematic of computational sy
nozzle. Thus, the model used for analysis simulates the

cavitating flow of liquid helium passing through the

orifice of a vertical cylindrical pipe. The pipe is filled

with pressurized liquid helium in adiabatic condition.

Flow immediately occurs when the outlet D–C is

opened. Liquid helium is continuously introduced via

the inlet section A–B, the flow is accelerated at the point

of the orifice, and the cavitation or liquid to vapor phase

change is induced by a decrease of pressure.

2.1. Governing equations

In the present numerical formulation of the cavitat-

ing flow characteristics of liquid helium, we extend the

old two-fluid model [3] to a new cryogenic vapor–liquid

multiphase fluid model for analysis which is based on

the unsteady thermal nonequilibrium multi-fluid model

of Kataoka [11], Harlow and Amsden [12]. In the nu-

merical model, the cryogenic cavitating flow state can be

approximated to that of a homogeneous bubbly flow

because the differences in the physical properties such as

density, viscosity and surface tension of the cryogenic

fluid between the gas and liquid phases, are very small

compared with those of the fluid at room temperature.

The small difference in the properties between gas and

liquid phases is unique to cryogenic fluids. Accordingly,

it seems reasonable to assume that the cryogenic cavi-

tating flow pattern is easily formed in the bubbly two-

phase flow.
stem used in numerical analysis.
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In the process of modeling, we consider the effects of

superfluidity in two-phase liquid helium, namely, su-

perfluid He II and normal fluid He I are treated as a

perfect fluid and meta-viscous fluid, respectively. In the

calculation, we assume that the property of superfluidity

appears when the fluid temperature becomes less than

the k point (temperature at normal fluid to superfluid

transition, about Tlk ¼ 2:17 K); however, in the case of

temperatures above the k point, we assume that the

superfluid behaves in the same manner as the normal

fluid. Here, we consider only the temperature depen-

dence of the superfluid and normal fluid densities; thus,

the normal fluid–superfluid transition ratio based on

quantum theory is not strictly considered. Furthermore,

to consider the effects of the rapid evaporation and

condensation of cryogenic fluid, we apply the rapid

phase change model of Yamamoto et al. [13] and Young

[14] to the cavitating flow of liquid helium.

The calculation is carried out using the two-dimen-

sional cylindrical coordinate system (r; z). The model for

analysis simulates the cavitating flow of liquid helium

passing through the orifice of a vertical pipe. In the

numerical modeling under this condition, the following

assumptions are employed to formulate the governing

equations.

(1) The cavitating flow is an axisymmetric two-dimen-

sional unsteady pipe flow.

(2) The vapor gas phase is produced by the phase

change of the normal fluid.

(3) The energy exchange between the liquid and gas

phases is taken into account.

For the construction of the cavitating flow charac-

teristics in the present numerical model, it is assumed

that the gas phase is homogeneously dispersed in the

surrounding liquid phase and that the flow structure will

form a bubbly flow.

Under the above conditions, the governing equations

of the cavitating flow, taking into account the effect of

superfluidity based on the unsteady two-dimensional

multi-fluid model, are derived as follows.

The mass conservation equation for the gas phase is

o

ot
ðaqgÞ þ r � ðaqgvgÞ ¼ Cg: ð1Þ

The mass conservation equation for the liquid phase is

o

ot
½ð1� aÞql	 þ r � ½ð1� aÞjl	 ¼ Cl; ð2Þ

where the relationship (Cg þ Cl ¼ 0) is assumed. The

liquid phase density, ql, must be comprised of a linear

combination of the two components. The density is ex-

pressed by the sum of the normal fluid and superfluid

components, and ql is defined as follows:
ql ¼ qlðnÞ þ qlðsÞ: ð3Þ

For the two-fluid model, it is assumed that the entire

temperature dependence of liquid helium densities enter

through the variation of the normal fluid density. It is

therefore possible to write

qlðnÞ

ql

¼
Tl
Tlk

� �5:6

for Tl 6 Tlk;

1 for Tl > Tlk;

8<
: ð4Þ

as the temperature dependence of the normal fluid

density [3]. Because of this strong temperature depen-

dence, the He II constitutes about 99% of the superfluid

component at 1.0 K. The total densities of the two

components, namely, the superfluid and the normal fluid

densities in control volume are conservative in the nu-

merical calculation process. qlðnÞ and qlðsÞ are calculated

by Eqs. (3) and (4) simultaneously. Also, the liquid

phase momentum flux density jl ð¼ qlvlÞ can be written

as the sum of each normal fluid and superfluid mo-

mentum flux density component, defined as follows:

jl ¼ qlðsÞvlðsÞ þ qlðnÞvlðnÞ: ð5Þ

The combined equation of motion for a total gas and

normal fluid is

o

ot
½aqgvg þ ð1� aÞqlvlðnÞ	

þ r � ½aqgvgvg þ ð1� aÞqlvlðnÞvlðnÞ	

¼ �rPl � ð1� aÞ
qlqlðsÞ

qlðnÞ
SlrTl � ð1� aÞ

qlðsÞ

2


rðvlðnÞ � vlðsÞÞ2 þ ð1� aÞqlg

þr � lT rvlðnÞ

��
þ ðrvlðnÞÞT � 2

3
ðr � vlðnÞÞI

�	
� ð1� aÞF lðsnÞ:

ð6Þ
The combined equation of motion for a total gas and

superfluid is

o

ot
½aqgvg þð1� aÞqlvlðsÞ	 þr � ½aqgvgvg þð1� aÞqlvlðsÞvlðsÞ	

¼ �rPl þð1� aÞqlSlrTl þð1� aÞ
qlðnÞ

2
rðvlðnÞ � vlðsÞÞ2

þð1� aÞqlgþð1� aÞF lðsnÞ;

ð7Þ

where the second terms on the right-hand side of Eqs. (6)

and (7) denote the thermomechanical effect of the force

based on the product of the entropy by the temperature

gradient, and the third terms denote the effect of the

momentum energy gradient based on the two-phase

superfluid–normal fluid relative velocity caused by

counterflow of the superfluid against the normal fluid.

The terms mentioned above are peculiar to liquid helium
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with superfluidity [3]. The signs of these terms in Eq. (6)

are opposite with those in Eq. (7); thus, the forces based

on the superfluidity of Eq. (6) act in the direction op-

posite those of Eq. (7). In this calculation, because the

vapor phase is assumed to be produced by the phase

change of the normal fluid, the cavitating flow of the

superfluid is consists of the mixture flow of the vapor

phase produced by the normal fluid and the superfluid.

The term F lðsnÞ denotes the two-phase superfluid–normal

fluid mutual friction interaction term based on the

generation of vortex filaments in the superfluid [15–17].

Assuming that the flow field is axisymmetric two-

dimensional results in the following simplified formula

for each r- and z-direction components of F lðsnÞ:

FlðsnÞr ¼ �B
qlðnÞ

2
ð�xlhvlðnÞ þ xlhvlðsÞÞ; ð8Þ

FlðsnÞz ¼ �B
qlðnÞ

2
ðxlhulðnÞ � xlhulðsÞÞ; ð9Þ

xlh ¼
oul
oz

�
� ovl

or

�
; ð10Þ

where coefficient B denotes the mutual friction para-

meter which has a strong temperature dependence [17].

Additionally, lT in Eq. (6) denotes the viscosity of

the two-phase mixture flow that includes small dispersed

bubbles. lT was evaluated using the following formula

by Einstein for the viscosity of a suspension [18,19]:

lT ¼ ð1þ 2:5aÞllðnÞ; ð11Þ

where Eq. (11) being mainly applicable in the small gas

phase volume fraction region. Concerning the viscosity,

the present numerical model assumes that superfluid

viscosity llðsÞ ¼ 0 and that the dissipative interaction is

due only to the normal fluid. This assumption corre-

sponds to the physical fact that the superfluid experi-

ences no resistance to flow and therefore no turbulence.

The superfluid can flow through a pipe without viscous

drag along the boundaries. Equations (6) and (7) above

are derived by complying the equations of momentum

for both the gas and liquid phases.

To consider the effects of additional forces that act on

the bubbles and radial expansion of the bubbles, the

equation of motion for the gas phase is here replaced

with the translational motion of a single bubble [20].

Therefore, the Eulerian–Lagrangian two-way coupling

model [21] is applied to predict the two-dimensional

cavitating flow characteristics. If the bubbles exist in the

superfluid region, the viscous drag force FD that act on

the bubbles in the superfluid are neglected because of the

zero viscosity.

The equation of motion for the gas phase is

4

3
pqgR

3
g

dvg
dt

¼ �FP þ Fg � FD � FVM � FB þ FLM þ FLS;

ð12Þ
where each additional force term is derived as follows:

FP ¼ 4

3
pR3

grPl; ð13Þ

Fg ¼
4

3
pR3

gqgg; ð14Þ

FD ¼ 1

2
qlCDjvg � vljðvg � vlÞpR2

g; ð15Þ

FVM ¼ CVM � ql

4

3
pR3

g

d

dt
ðvg

�
� vlÞ þ

3

Rg

ðvg � vlÞ
dRg

dt

�
;

ð16Þ

FB ¼ 6R2
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pqlllðnÞ

p Z t

0

d
ds ðvg � vlÞffiffiffiffiffiffiffiffiffiffi

t � s
p ds; ð17Þ

FLM ¼ pR3
gqlðXg � XlÞ 
 ðvg � vlÞ; ð18Þ

FLS ¼ 6:46
llðnÞR

2
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðXg � XlÞjmlðnÞ
p ðXg � XlÞ 
 ðvg � vlÞ;

ð19Þ

Xl ¼
1

2
r
 vl; ð20Þ

where vl ¼ jl=ql, Rg is the equivalent bubble diameter, FP

is the force due to the liquid phase pressure gradient, Fg

is the gravitational acceleration force, FD is the viscous

drag force. FD is only considered while the bubble exists

in the normal fluid region, and is not considered while

the bubble exists in the superfluid region. FVM is the

virtual mass force considering the expansion of a bub-

ble, and FB is the Basset history term which takes into

account the effect of the deviation in flow pattern from

the steady state. FLM is the Magnus lift force caused by

the rotation of the bubble as reported by Auton et al.

[22]. FLS is Saffman’s lift force [23] caused by the velocity

gradient of the liquid phase. CD is the drag coefficient

and CVM is the virtual mass coefficient. d=dt denotes the
substantial derivative.

The equation for the angular velocity of a bubble is

derived as follows [23]:

dXg

dt
¼

15llðnÞ

R2
g � qg

ðXl � XgÞ; ð21Þ

The energy equation for the gas phase is

o

ot
ðaqgegÞþr� ðaqgegvgÞ

¼�Pg
oa
ot

�r�ðaPgvgÞþCghðiÞg þqðiÞg aðiÞ �r� ðaqgÞþaUg:

ð22Þ
The energy equation for the liquid phase is

o

ot
½ð1� aÞqlel	 þ r � ½ð1� aÞqlelvl	

¼ �Pl
oð1� aÞ

ot
�r � ½ð1� aÞPlvl	 þ Clh

ðiÞ
l

þ qðiÞl aðiÞ � r � ½ð1� aÞql	 þ ð1� aÞUl; ð23Þ
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where hðiÞg and hðiÞl are the enthalpy of the gas phase and

the liquid phase at the interface, respectively. aðiÞ is the
interfacial area concentration. CghðiÞg and Clh

ðiÞ
l are the

interfacial energy transfer terms due to the liquid–vapor

phase change. qðiÞg and qðiÞl are the heat transfer terms of

mutual interaction between the vapor and liquid inter-

face. q is the heat flow vector and U is the energy dis-

sipation function, as described below:

qm ¼ �kmrTm;
Um ¼ sm : rvm;

sm ¼ lm rvm þ ðrvmÞT � 2
3
ðr � vmÞI

h i
;

8><
>: ð24Þ

where subscript m denotes the gas phase (m¼ g) or

liquid phase (m¼ l). In the condition of the He II state,

Gorter–Mellink 1/3 power law [3,8] is considered to

formulate the expression for kl in Eq. (24) by the fol-

lowing equation:

kl ¼
f �1ðTlÞ
jrTlj2

 !1=3

; ð25Þ

where f ðTlÞ is the He II heat conductivity function which

exhibits strong temperature dependence [3].

Assuming that the mass of each vapor bubble and of

the condensed liquid droplet in each computational lo-

cation is constant results in the following mass conser-

vation equation for number density, Nk:

o

ot
4

3
pR3

kNkqk

� �
þr � 4

3
pR3

kNkqkvk

� �
¼ Ck; ð26Þ

k¼ e : Rk ¼ Rg; Nk ¼ Ng; qk ¼ qg; vk ¼ vg; Ck ¼ Cg;
k¼ c : Rk ¼ Rl; Nk ¼ Nl; qk ¼ ql; vk ¼ vl; Ck ¼ Cl;

�

where subscript k denotes evaporation (k¼ e) or con-

densation (k¼ c).

The governing equations of cavitating flow men-

tioned above are constructed by Eulerian-type equations

for the liquid phase and by Lagrangian-type equations

for the gas phase.

2.2. Constitutive equations

It was found that the quantum cavitation with

quantum tunneling remarkably occurs in the ultimate

low-temperature condition of Tl 6 0:6 K. Above Tl ¼ 0:6
K, it may be possible to say that the formulation of the

two phase constitutive equations for cryogenic fluid can

be expected for the ordinary two phase constitutive

equations for room temperature fluid [24,25].

The drag coefficient, CD, and the virtual mass coef-

ficient, CVM in (12), are defined as follows [23]:

CD ¼ 24

ReB
ð1þ 0:15Re0:687B Þ þ 0:42

1þ 42500Re�1:16
B

; ð27Þ

CVM ¼ 0:5; ð28Þ
ReB ¼ qljvg � vljD
llðnÞ

; ð29Þ

where CD and ReB are applicable while the bubbles exist

in the normal fluid region. D is the inner diameter of the

pipe, ReB is the two phase Reynolds number. The energy

balance condition through the interface of the gas and

liquid phases is expressed by the following equation:

CghðiÞg þ qðiÞg þ Clh
ðiÞ
l þ qðiÞl ¼ 0; ð30Þ

where hk ¼ cpkTk; (k¼ g, l). The constitutive equations

for interfacial transfer term qðiÞg in Eqs. (22) and (30) are

given by following cryogenic extended empirical for-

mulas [26,27]:

qðiÞg ¼ kðiÞðTg � TsÞ; ð31Þ

where kðiÞ is the interfacial heat transfer rate between gas

and liquid phases, and is given by following equations

[26]:

kðiÞ ¼ akðiÞg þ ð1� aÞkðiÞlðnÞ ðin normal fluid regionÞ;

kðiÞ ¼ akðiÞg þ ð1� aÞkðiÞlðsÞ ðin superfluid regionÞ;

kðiÞg ¼ 8:067 � kg

Rg

;

kðiÞlðnÞ ¼
1:0þ 0:37Re0:50V Pr0:35V

Rg

;

kðiÞlðsÞ ¼
1

Rg

;

ReV ¼ 2:0Rgjvg � vlj
mlðnÞ

;

PrV ¼
cpl � llðnÞ

kl

:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð32Þ

In the formulation of the above constitutive equations

concerning with the interfacial transfer term, it is as-

sumed that the energy transfer is caused by the heat

transfer between the isothermal spherical bubble and the

surrounding liquid. Assuming a spherical bubble with

equivalent radius Rg, the expression of interfacial area

concentration is obtained by the following equation [11]:

aðiÞ ¼ 3a
Rg

: ð33Þ

Assuming that the vapor gas phase follows an ideal gas

law and that the relationship between gas phase pres-

sure, Pg, and density, qg, obeys polytropic change, the

following equation by Hirt and Romero [28] results:

qgðjg � 1Þeg ¼ ½Pg � c20qlða
 � aÞ	a
; ð34Þ

aP ac : a
 ¼ a;
a < ac : a
 ¼ ac;

�
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where c0 is the first sound velocity in liquid helium at the

initial state (c0 ¼ 236:1 m/s) and ac denotes the threshold

of the void fraction (ac ¼ 0:005). The tables of the

thermophysical properties of liquid helium by Maynard

[29], Brooks and Donnelly, [30] and McCarty [31] give

the required physical properties of the liquid phase.

The constitutive equation for gas phase generation

density, Cg, is defined by the following equation:

Cg ¼ Cge � Cgc; ð35Þ

where Cge and Cgc denote the gas phase evaporation

density and gas phase condensation density, respec-

tively. By introducing constitutive equations for Cge and

Cgc, we extend the classical nucleation theory for water

droplets from subcooled vapor to the liquid helium.

Namely, Cge and Cgc are assumed to be proportional to

the degree of subcooling and superheat. The classical

nucleation theory without quantum effect can be applied

to the present numerical model because the temperature

range which has been dealt with this calculation is about

Tl ¼ 2:1 to 2.3 K (near the k point) [24,25].

Furthermore, if Cgk (k¼ e, c) is expressed by the sum

of the nucleation rate of the evaporated bubble or the

condensed liquid droplet, and also expressed by the in-

crease in mass due to the growth of vapor bubbles and

condensed droplets, the following equations for Cgk are

derived [13,14]:

Cgk ¼
4

3
pqkIkR

3
kðcrÞ þ 4pqk

Ximax

i¼1

NkiR2
ki

dRki

dt
; ð36Þ

Ik ¼
Ac

1þ H
2rl

pm3

� �1=2 q2
g

ql

exp �
4pR2

kðcrÞrl

3kBTk

 !
;

H ¼ 2ðjg � 1Þ
jg þ 1

Dh
RTg

Dh
RTg

� 0:5

� �
;

RkðcrÞ �
2rlTs

qkDhDT
:

8>>>>>>>><
>>>>>>>>:
In Eq. (36), subscript k has the same definition as that

used in Eq. (26), Rk is the radius of a bubble or droplet,

RkðcrÞ is the Kelvin–Helmholtz critical nucleate radius, kB
is Boltzmann’s constant, Ik is the nuclei generation rate

of vapor bubbles or liquid droplets, Ac is the conden-

sation coefficient, H is the nonisothermal correction

factor, m is the mass of a single molecule of helium, Ts is
the saturation temperature, r is the surface tension, R is

the gas constant, and subscript i is the value at each

calculation cell. Dh denotes the latent heat which is de-

scribed by the difference in specific enthalpy between the

liquid and gas phases and is defined as Dh ¼ hl � hg. The
temperature difference between saturation temperature

and gas phase temperature, DT , is defined as DT ¼
Ts � Tg. Nki denotes the number density of the generated

vapor bubbles or condensed liquid droplets at each

calculation cell i.
By introducing the formulation of the growth process

for bubbles and condensed droplets, we assume that the

growth rate of a bubble or droplet is controlled by the

rate at which the enthalpy of vaporization or conden-

sation can be conducted away from the bubble and

droplets to the bulk liquid [32]. Under that assumption,

the equation of the growth process for a single vapor

bubble and a condensed droplet is derived as

Dhqk

dRki

dt
¼ Pkffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pRTk
p jk þ 1

2jk

cpk DT ðiÞ; ð37Þ

where DT ðiÞ denotes the interfacial temperature between

the vapor phase and the condensed droplet and is de-

rived by the following equation:

DT ðiÞ ¼ 1

�
� RkðcrÞ

Rki

�
ðTs � TgÞ: ð38Þ
2.3. Numerical conditions and procedure

To construct the numerical conditions for the cavi-

tating liquid helium flow, we refer to the cryogenic

cavitating internal flow state or condition of the liquid

helium cavitating flow in a venturi channel reported by

Ishii and Murakami [6], Daney [7], and to the LE-7

liquid oxygen turbopump for the H-II rocket engine

reported by Kamijo et al. [5]. The finite difference

method is used to solve the set of governing equations

mentioned above. In the present calculation, the discrete

forms of these equations are obtained using a staggered

grid; then the modified SOLA (numerical SOLution

Algorithm for transient fluid flow) method of Tomiyama

and Hirano [33], which is superior for the formulation

and solution of a gas liquid two-phase flow problem, is

applied for the numerical calculation. The liquid phase

velocity, vl, at the location of bubbles is calculated using

an area-weighting interpolation method which was used

in the SMAC algorithm by Amsden and Harlow [34].

To determine the boundary conditions, free-slip

conditions for prescribed superfluid and normal fluid

velocities are applied to the axisymmetric axis, D–A, in

Fig. 2. Nonslip conditions for prescribed normal fluid

velocities and free-slip conditions for prescribed super-

fluid velocities are applied to the sidewall, C–B. Also, a

fully developed velocity profile is applied for normal

fluid velocities to the inlet cross-sectional area of the

flow pipe, A–B. A convective outflow condition is ap-

plied to the exit section of the pipe, D–C. Adiabatic

conditions are applied for thermal boundary conditions

at the pipe wall surface. The initial stationary condition

of the liquid phase is assumed to be the pressurized He I

state. Also, the initial conditions at the inlet section of

the flow pipe are as given in Table 1. For other physical

properties used in constitutive equations, llðnÞ and Sl are
given as functions of temperature [29–31].



Table 1

Conditions for numerical analysis

Inlet pressure PlðinÞ 0.20 MPa

Outlet pressure PlðexÞ 0.101 MPa

Internal energy elðinÞ 6.021 kJ/kg

Inner diameter of pipe D 10.0 mm
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The interval of each time step is automatically ad-

justed during the computation to satisfy the CFL con-

dition. We actually calculated solutions on three

different grid densities: 50
 120, 60
 150 and 110
 220

nodes. As a result, we found that numerical results for

all three grids show the same profiles, and the grid in-

dependence of the numerical results was confirmed.

Thus, as a compromise between computer memory

and accuracy, we chose to use the 60
 150 grid (6.0
Fig. 3. Time evolution of voi

Fig. 4. Time evolution of liquid
mm
 15.0 mm, physical dimensional computational

domain) in the r- and z-directions for the calculations.

The calculation is executed until an almost steady state

of the cavitating flow is attained.

2.4. Results and discussion

Fig. 3 shows the numerical results of the transient

evolution of the void fraction (a) contour, Fig. 4 shows

the transient evolution of the liquid phase temperature

(Tl) contour, and Fig. 5 shows the instantaneous liquid

phase pressure (Pl) contour. The direction of mainstream

is upward longitudinal direction. Fig. 6 shows the fluc-

tuations of void fraction, a and pressure, Pl as a function

of the time at position E (r ¼ 1:0 mm, z ¼ 3:3 mm, as

depicted in Fig. 2) just downstream of the orifice, where

the cavitation actively occurs. Fig. 7 shows the fluctua-
d fraction distributions.

phase temperature profiles.
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tion of bubble radius, Rg as a function of the time at

position E. As shown by Fig. 3, it is clear that the phase

change with cavitation effectively occurs with time and

the cavity vortices are formed, and that the gas phase

advects and spreads throughout the inner flow pipe. In

this numerical calculation, it is assumed that the exis-

tence of the large gas phase volume fraction region in-

dicates that the small size bubbles shown in Fig. 7

constitute a closely aggregated region and that the

downstream flow state keeps very closed bubbly flow in

the large void fraction region. The bubbles are concen-

trated toward the center of the vortex cavity due to the

negative pressure gradient in the vortex.

It is found that the characteristics of superfluidity are

conspicuous in the large gas phase volume fraction re-

gion where the phase change with cavitation actively
occurs and the pressure gradient actively changes. The

effect of superfluidity with He I to He II phase transition

is mainly caused by the decrease in liquid phase tem-

perature or internal energy due to the deprivation of

latent heat for vaporization from the liquid phase and to

the change of the specific heat of the liquid phase with

the change of pressure gradient. From Fig. 4, it is es-

pecially found that the temperature around the interface

between the large gas phase volume fraction region and

the liquid phase region decreases with the increase in the

phase change. The liquid phase temperature decrease

due to the latent heat, or the energy exchange between

liquid- and vapor phase in the vaporization process are

characterized by the interfacial energy transfer terms

with the phase change in Eqs. (22) and (23).
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From Figs. 3–7, it is clarified that the decrease of Pl
induces the increase of a, and the expansion or con-

traction of bubble radius Rg correspond to the change of

Pl, however, the displacement magnitude of Rg shows

small value. Thus, it is also clarified that the generated

cavitation bubbles keep small size in the vaporization

process and in the initial cavitating flow state. Further-

more, in the region of high volume fraction of the gas

phase, the pressure distribution changes markedly be-

cause of the normal fluid–superfluid transition due to

the momentum terms in Eqs. (6) and (7) that include the

temperature gradient term, the momentum energy gra-

dient term based on relative superfluid–normal fluid

velocity, and the superfluid–normal fluid mutual friction

interaction term.

Focusing on Figs. 3 and 6, the decrease in the ab-

solute value of the negative pressure gradient and the

increase in the absolute value of the positive pressure

gradient with time are found near the downstream re-

gion passing through the orifice. Immediately after the

flow is initially induced, taking note of the primary

feature of the void fraction profile, the gas phase leaves

from a position behind the edge of the orifice and is

concentrated downstream of orifice due to the small

vortex induced by the He I wake passing through the

orifice, based on the effect of the negative pressure gra-

dient. With time, the gas phase rises from the edge of the

orifice, and the high volume fraction region of the gas

phase advects downstream. It is found that the phase

change with cavitation effectively occurs with time and

that the gas phase spreads throughout the inner flow

pipe, because of the decrease in the slip ratio and the gas

phase velocity resulting from the sudden change of both

longitudinal and transverse pressure gradients based on

the superfluidity generation. Another reason for the

enhancement of liquid–vapor phase change is that the
Fig. 8. Instantaneous norma
existence rate of the gas phase spread in the pipe per unit

time increases with the increase in the effect of super-

fluidity. The tendencies of those numerical results for

void fraction profiles, pressure distribution, and tem-

perature decrease with the He I to He II phase transition

show qualitative agreement with the experimental datum

on the He I cavitation in the saturated condition by Ishii

and Murakami [6].

Figs. 8–10 show profiles of the instantaneous liquid

phase normal fluid velocity component vlðnÞ, the super-

fluid velocity component vlðsÞ, and gas phase velocity vg,
respectively. Fig. 11 shows the velocity fluctuations of

normal fluid and superfluid as a function of the time at

the position E. In the case of temperatures above the k
point, we assume that the superfluid behaves in the same

manner as the normal fluid; thus the profile of vlðsÞ
similar to the profile of vlðnÞ denotes the normal fluid

velocity profile. Concerning with Figs. 5 and 8, it is

found that there is a low-pressure region passing

through the central axis of the orifice induced by the

acceleration of fluid velocity. From Fig. 8, it can be seen

that the magnitude of fluctuation of vlðnÞ increases with
an increase in longitudinal coordinate z just behind the

orifice.

From a comparison of the results of the two-phase

velocity profile between the vlðnÞ and vlðsÞ, it is clear that
the counterflow or counter-vortex of the superfluid

against the normal fluid occurs in the region where the

liquid to vapor phase change with cavitation actively

occurs; and that the velocity vectors between normal

fluid and superfluid show different profiles. Immediately

after the flow is initially induced, taking note of the

primary feature of the liquid phase velocity profile,

profiles of vlðnÞ and vlðsÞ behave similarly; however, the

rotating direction of the each vortices is opposite. With

time, especially downstream of the orifice in the high
l fluid velocity vector.



Fig. 9. Instantaneous superfluid velocity vector.

Fig. 10. Instantaneous gas phase velocity vector.
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volume fraction region of the gas phase, the difference in

velocity profiles is observed due to the counterflow of

the superfluid against the normal fluid based on the

generation of the superfluidity.

Also, it is found that the magnitude of the vortex

induced by the normal fluid wake passing through the

orifice becomes larger; however, the vortex has a shape

different from that of superfluid because of the slight

viscosity in normal fluid and counterflow of superfluid.

The superfluid counterflow against normal fluid is

mainly caused by the momentum terms in Eqs. (6) and

(7), i.e., the temperature gradient term (thermome-

chanical effect) and the momentum energy gradient term

for superfluid–normal fluid relative velocity. The mech-

anism for thermomechanical effect of the superfluid

counterflow or counter-vortex generation due to the

temperature decrease is schematically depicted in Fig.
12. From Figs. 3, 11 and 12, it is possible to say that the

He I to He II phase transition rate, and the generation

rate of counterflow or counter-vortex increase with in-

crease in the magnitude of a. The superfluid counterflow

or counter-vortex caused by the effect of superfluidity

terms in momentum equations (6) and (7) is conspicuous

found when the vaporization with the He I to He II

phase transition is generated. From Fig. 10, it is found

that the gas phase is accelerated in longitudinal and

radial directions, not only by the buoyancy force but

also due to the negative liquid phase pressure gradient,

temperature gradient, and additional lift forces that act

on the bubbles. Contrarily, the gas phase is decelerated

due to the additional drag forces and positive liquid

phase pressure gradient that act on the bubbles.

The several body force effects caused by superfluidity

on gas phase velocity vg are shown in Fig. 13. Case (a)
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means the effect of pressure gradient. Case (b) means the

effects of temperature gradient force with case (a). Case

(c) means the effects of momentum energy gradient force

with case (b). And case (d) means the effects of mutual

friction interaction with case (c). These forces are based

on the superfluidity terms that appear in momentum

Eqs. (6) and (7).

Fig. 14 shows the fluctuation of the normalized liquid

phase temperature gradient, rT 

l ¼ rTl=rTlðmÞ, as a

function of the time, where rTlðmÞ denotes the time av-

eraged mean value of rTl in prescribed computational
time interval. According to Figs. 13 and 14, it is found

that the driving force on bubble due to pressure gradient

is most dominant compare to other forces, however, the

magnitude of fluctuation of vg correspond to the fluc-

tuation of the temperature gradient rT 
. Concerning

with Figs. 6–9, it is clarified that the effects of temper-

ature gradient (b), additionally (c), (d), (e) on vg become

larger with increase in the void fraction, or with increase

in He I to He II phase transition rate.

The mechanisms of the effects of pressure gradient or

temperature gradient that act on the bubbles are sche-

matically summarized in Fig. 15. From Figs. 10, 14 and

15, the temperature gradient force acts opposite direc-

tion on normal fluid and superfluid each other, simul-

taneously, the force oppositely acts on the bubbles in

normal fluid and in superfluid mutually. Namely, the

bubbles in normal fluid accelerate in the positive tem-

perature gradient direction, and bubbles in the super-

fluid accelerate in the negative temperature gradient

direction. With time, the gas phase motion exhibits

diffusing behavior caused by the interaction between the

fluid flow of the gas and liquid phases. One of the mo-

mentum interactions related to the diffusing behavior is

caused by the change of pressure or temperature gradi-

ent, which acts on the bubbles due to the superfluid

counterflow against the normal fluid. The generation of

the normal fluid disturbance also causes the gas phase

diffusion. The rate of gas phase velocity deceleration

concurrent with He I to He II phase transition, increases

with the decrease in the negative liquid phase pressure

gradient or the increase of positive pressure gradient,

and the positive temperature gradient surrounding the

interface between gas and liquid phases. The change of

the liquid phase pressure gradient for vg deceleration

with the effect of the spread of the gas phase is caused by

the increase of the superfluid counterflow to normal

fluid with phase transition.
3. Conclusion

The axisymmetric two-dimensional characteristics of

the cavitating flow of liquid helium in a pipe near the k
point were numerically investigated to realize the further

development and high performance of superfluid cooling

system or new cryogenic engineering applications. First,

the governing equations of the cavitating flow of liquid

helium based on the Eulerian–Lagrangian unsteady

multi-fluid model were presented and several flow

characteristics were numerically calculated, taken into

account the effect of superfluidity. The main results

obtained here can be summarized as follows.

(1) It was found that the characteristics of superfluidity

are conspicuous in the large gas phase volume frac-

tion region where the phase change with cavitation



Fig. 12. Schematic of mechanism of the superfluid counterflow or counter-vortex generation.
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actively occurs and the pressure gradient actively

changes. Also, the effect of superfluidity with He I

to He II phase transition is mainly caused by the de-

crease in liquid phase temperature or internal energy

due to the deprivation of latent heat for vaporization

from the liquid phase.

(2) The superfluid counterflow or counter-vortex

against normal fluid caused by the thermomechani-

cal effect of momentum terms based on superfluidity

is conspicuous found when the vaporization with He

I to He II phase transition is generated. Further-

more, it was found that the gas phase diffusing be-

havior with time was dominated not only by the

change of pressure gradient but also by the change

of the temperature gradient that acts on the bubbles

due to the superfluid counterflow.



Fig. 15. Mechanism of the effects of pressure gradient or temperature gradient that act on bubbles.
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